

Fig. 4.—Plot for rate constant, k_1 , for the dissociation of benzaldehyde-sodium bisulfite in water at 13°. Dotted line corresponds to extrapolated points; $k_1 = \text{slope}/1.011$.

Table I summarizes the values obtained for the equilibrium constant, the thermodynamic functions for the dissociation and the rate constants for dissociation and association. For comparison the values reported by Gubareva at 30° are listed.

Gubareva also used iodimetric titrations to study the dissociation constants for the bisulfite complexes of a number of aliphatic aldehydes and ketones. He reported K's in the range of 10^{-3} to 10^{-5} and an average value of 7.9 kcal./mole for the ΔH 's of dissociation. These values could likewise be subject to error arising from dissociation of the complex during the titration, as may be indicated by the

	TABLE			
<i>T</i> , (°C.)	13	23	33	30 (lit.) ¹
K (1./mole) $\times 10^5$	7.09	21.1	53.8	229
ΔH (kcal./mole)	17.7	17.7	17.7	7.20
ΔS (cal./mole deg.)	42.9	43.0	42.9	12.2
ΔF (kcal./mole)	5.43	4.98	4.58	3.68
<i>k</i> ₁ (sec. ~1)	0.017			
k_2 (1./mole sec.)	245			

fact that these ΔH 's are only about half as large as the ΔH of dissociation found for the benzaldehyde bisulfite complex in this work. Gubareva's ΔH values would indicate that the bond strength of the bisulfite complex is no stronger than that of a strong hydrogen bond. Better values for the equilibrium constants of aliphatic carbonyl bisulfite complexes might be obtained by adding known amounts of the aliphatic carbonyl compound (or its bisulfite salt) to solutions of benzaldehyde sodium bisulfite and using ultraviolet spectra to determine the effect on the concentration of dissociated benzaldehyde. A straightforward, but somewhat cumbersome, relationship exists between the amount of benzaldehyde and the equilibrium constant of the aliphatic carbonyl bisulfite complex in such a system. Error from the absorbance of the aliphatic carbonyl compounds would be negligible since at $250 \text{ m}\mu$ the molar absorptivities of most of them are only about 0.1% of that of benzaldehyde. This Laboratory does not expect to carry out additional work along these lines.

Acknowledgment.—The authors are indebted to Mr. Carmine DiPietro for the elemental analysis.

[CONTRIBUTION FROM THE CHEMISTRY DEPARTMENT, DREXEL INSTITUTE OF TECHNOLOGY, PHILADELPHIA, PENNSYLVANIA]

n-Butylhalogermanes with Hydride Bonding¹

By HERBERT H. ANDERSON

Received December 1, 1959

Gradually added deficiencies of $HgCl_2$, $HgBr_2$ or I_2 change previously known $n-C_4H_9GeH_3$ into the respective new compounds $n-C_4H_9GeH_2Cl$, $n-C_4H_9GeH_2Br$ and $n-C_4H_9GeH_2I$, all of which have penetrating odors. Similarly, $HgCl_2$, $HgBr_2$ or I_2 change previously known $(n-C_4H_9)_2GeH_2$ —for which there is now a b.p. of 173° under 760 mm.—into new $(n-C_4H_9)_2GeHCl$. $(n-C_4H_9)_2GeHBr$ and $(n-C_4H_9)_2GeHI$. These six new compounds appear to be the first examples of the RGeH_2X or R_2GeHX types in which R is an alkyl group and X is a halogen. Aqueous ammonia and a solution of previously known $n-C_4H_9GeCl_3$ in CCl₄ furnish polymeric white solid $[(n-C_4H_9GeC)_2O]_n$, which reacts with hot concentrated HBr to give a partial vield of $n-C_4H_9GeBr_2$. Table I lists the properties and analyses of 8 new compounds and presents advante date of the solution of the solut tial yield of n-C,H₈GeBr₈. Table I lists the properties and analyses of 8 new compounds and presents adequate data on n-C₄H₉GeCl₃.

Introduction

Six earlier publications establish the use of halides of certain transitional elements and elements in regular groups in the replacement of hydrogen attached to germanium^{2a} in $(C_2H_5)_3$ GeH, to tin^{2b} in $(C_2H_5)_3SnH$ or to silicon in $(C_2H_b)_3$ - $SiH_{3}^{3} (C_{2}H_{5})_{2}SiH_{2}, n-C_{7}H_{15}SiH_{3}^{4} cyclo-C_{6}H_{11}^{-1}$ SiH_3^5 or $n-C_4H_9SiH_3^{-6}$

(1) Presented at the Third Delaware Valley Regional Meeting of the American Chemical Society, Philadelphia, February, 1960. (2) (a) H. H. Anderson, THIS JOURNAL, **79**, 326 (1957); (b) **79**,

4913 (1957)

(3) H. H. Anderson, ibid., 80, 5083 (1958).

(4) H. H. Auderson and A. Hendifar, ibid., 81, 1027 (1959).

(5) H. H. Anderson, ibid., 81, 4785 (1959).

(G) H. H. Anderson, ibid., 82, 1323 (1960)

Gradual addition of HgCl₂, HgBr₂, AgNCO, AgNCS or I_2 to an excess of the appropriate alkylsilane or dialkylsilane allows relatively straightforward preparation of partially substituted compounds such as $n - C_7 H_{15} Si H_2 Cl$, ⁴ $(C_2 H_5)_2 Si H Br$, ³ cyclo-C₆H₁₁SiH₂NCO,⁵ cyclo-C₆H₁₁SiH₂NCS⁵ or *n*- $C_4H_9SiH_2I.^6$ Moreover, the careful treatment⁶ of n- $C_4H_9SiH_3$, b.p. 56°, with HgCl₂, HgBr₂ or I₂ at either 10 or 22° to obtain n- $C_4H_9SiH_2Cl$, n-C4H9SiH2Br or n-C4H9SiH2I, respectively, suggests methods for later preparation of the corresponding compounds $n-C_4H_9GeH_2Cl$, $n-C_4H_9GeH_2Br$ and n-C₄H₉GeH₂I.

A recent publication lists the properties of n- $C_4H_9GeH_3$, $(n-C_4H_9)_2GeH_2$ and a number of other

Table	Ι
-------	---

Prof	PERTIES O	F NEW n-1	Butylgei	RMANIUM	Сомрои	unds (E	XCEPT S	econd)		
B.p., b				refr.—	-Germanium-		Halogen		Distilled at	
°C.	d^{20} 4	n 20 c	Caled.	Found	Calcd.	Found	Caled.	Found	°С.	Mm.
140.0	1.246	1.4598	36.80	36.74	43.4	43.1	21.2	21.2^d	89-90	138
184	1.451	1.4750	44.82	45.81	30.8	30.5	45.1	45.1	83.5-84.0	24
159	1.536	1.4910	40.30	39.91	34.3	34.2	37.8	37.8	94 - 95	91
237	2.132	1.5548	55.32	55.60	19.7	19.9	64.9	64.9	61 - 63	1
181	1.776	1.5412	45.90	45.78	28.1	27.7	49.1	49.1	84.5-85.5	27
310^{f}	2.647		79.08		14.2	14.0	74.6	74.7	119 - 121	1
219	1.107	1.4618	55.23	55.43	33.3	33.0	15.9	16.0	105.4-105.6	17
234	1.305	1.4832	58.73	58.62	27.1	27.1	29.9	29.9	112 - 113	14
249	1.470	1.5148	64.33	64.54	23.1	22.9	40.3	40.4	73-75	1
	Prof B.p. b 140.0 184 159 237 181 310 ⁷ 219 234 249	$\begin{array}{c} \begin{array}{c} {\rm Properties \ o} \\ {}^{\rm B_{\rm o}{\rm c}, \ b} \\ {}^{\rm o}{\rm c}, \ d^{20_4} \\ 140.0 & 1.246 \\ 184 & 1.451 \\ 159 & 1.536 \\ 237 & 2.132 \\ 181 & 1.776 \\ 310^f & 2.647 \\ 219 & 1.107 \\ 234 & 1.305 \\ 249 & 1.470 \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

^{*a*} All compounds are colorless except the pale yellow n-C₄H₈GeI₃. ^{*b*} Under 760 mm. pressure. ^{*c*} In white light. ^{*d*} All analyses for halogen represent averages of two closely agreeing determinations. ^{*e*} Mentioned in ref. 7 without data. ^{*f*} With some decomposition.

closely related alkylgermanium hydrides. This paper⁷ gives the Ge–H bond refraction as 3.59 and mentions the reaction of n-C₄H₉MgCl and GeCl₄ to give n-C₄H₉GeCl₃, for which there are no data.

This publication represents, in turn and apparently for the first time, organogermanium compounds containing a halogen, Ge–H and one or two alkyl groups in the same molecule: n-C₄H₉GeH₂Cl, n-C₄H₉GeH₂Br, n-C₄H₉GeH₂I, (n-C₄H₉)₂GeHCl, (n-C₄H₉)₂GeHBr and (n-C₄H₉)₂GeHI. This paper also presents the alkylgermanium trihalides n-C₄H₉GeBr₃ and n-C₄H₉GeI₃ and the polymeric white solid [(n-C₄H₉GeO)₂O]_n, with data for n-C₄H₉GeCl₃.

Experimental Results

Table I lists the boiling points, densities, refractive indices, molar refractions, analyses and distillation ranges for 8 new organogermanium compounds: n-C₄H₉GeH₂Cl, n-C₄H₉GeH₂Br, n-C₄H₉GeBr₃, n-C₄H₉GeH₂I, n-C₄H₉GeH₂GeHCl, (n-C₄H₉)₂GeHCl, (n-C₄H₉)₂GeHCl, (n-C₄H₉)₂GeHBr and (n-C₄H₉)₂GeHI. There is adequate data for n-C₄H₉GeCl₃. A separate paragraph in the Experimental section presents the properties and analysis of the polymeric white solid [(n-C₄H₉GeO)₂O]_n.

Experimental

Grignard Reaction.—Gradual addition of 1.04 l. of 1.9 M n-C₄H₉MgCl to 440 g. of GeCl₄ dissolved in 200 ml. of ether, then shaking the resultant mixture with 8 M HCl to extract MgCl₂, next separation of layers and drying of the ether layer with Na₂SO₄, and finally fractional distillation furnished 130 g. of n-C₄H₉GeCl₃ and 135 g. of higher boiling compounds.

n-Butylgermane and Di-*n*-butylgermane.—Reaction of 100 g. of $n-C_4H_9GeCl_3$ with a solution of 19 g. of LiAlH₄ in 150 ml. of di-*n*-dibutyl ether, followed by direct distillation of the resultant $n-C_4H_9GeH_3$, furnished 56 g. (99% yield) of $n-C_4H_9GeH_3$. This $n-C_4H_9GeH_3$ had a peculiar odor something like that of a tin can which has stood open with some adhering food for some time; the compound had b.p. 75.6°, n^{20} 1.4207 and d^{20}_4 1.033, all in reasonable agreement with the published data.⁷ Reaction of the 135 g. of the higher boiling mixture in the paragraph above with 15 g. of LiAlH₄ in 600 ml. of diethyl ether ultimately furnished 54 g. of $(n-C_4H_9)_2GeH_2$, b.p. 76.2–76.7 at 24 mm., 19 g. of crude $(n-C_4H_9)_3GeH$. b.p. 68–69° at 1 mm., and 9 g. of $(n-C_4H_9)_2GeH_2$ had n^{20} 1.4223 and d^{20}_4 0.977, both in agreement with previous data,⁷ and also the new b.p. of 173° under 760 mm. pressure; there was a slight, agreeable odor. Storage of these hydrides, also all other products in this paper, was in sealed glass tubes.

n-Butyltrichlorogermane.—Further fractional distillation of the n-C₄H₉GeCl₃ mentioned under Grignard Reaction above gave pure material listed as center fraction in Table I and serving for reactions.

(7) J. Satgé, R. Mathis-Noël and M. Lesbre, Compt. rend., 249, 131 (1959).

n-Butyliodogermane.—Gradual addition of 9.4 g. of powdered iodine to 6.2 g. of *n*-C₄H₉GeH₃ over a period of 2 lnr. mainly at 0° and then fractional distillation furnished some unchanged *n*-C₄H₉GeH₃, then 8.4 g. (70% yield) of *n*-C₄H₉GeH₂I and some higher boiling material. Two successive redistillations furnished a 4.2 g. center fraction *n*-C₄H₉GeH₂I listed in Table I; the compound had a peculiar, penetrating odor.

n-Butyltriiodogermane.—Gradual addition of 19 g. of iodine over 2 hr. at 0° to 6.8 g. of n-C₄H₉GeH₃, then addition of another 19 g. of iodine (total 38 g., with a slight color of excess iodine) at 30°, with a little heating at the end, and then distillation from copper powder gave 24.0 g. (92% yield) of clear, pale yellow n-C₄H₉GeI₃. n-Butyltriiodogermane decomposed slightly at the normal b.p. to give a yellow solid such as GeI₂ or possibly GeI₄; n-C₄H₉GeI₃ had a refractive index above 1.70.

n-Butylbromogermane.—Storage of 7.7 g, of HgBr₂ and 6.2 g, of *n*-C₄H₉GeH₃ for 5 hr. at 31° and then 10 minutes of gentle reflux, followed by fractional distillation, furnished metallic mercury, 1.0 g, of unchanged *n*-C₄H₉GeH₃, 7.7 g, (78% yield) of *n*-C₄H₉GeH₂Br and 0.5 g, of residue. Table I lists a 3.5 g, center fraction with a rather sharp and penetrating odor.

n-Butylchlorogermane.—Addition of 6.0 g. of HgCl₂ to 6.20 g. of n-C₄H₉GeH₃ at 0°, with shaking and standing 1.2 hr., warming up to 25°, gave a liquid with 14.4% Cl. Thereafter, addition of 1.20 g. of HgCl₂ (total 7.20 g.), storage for 1 hr., slight heating and then distillation under 160 mm. pressure furnished 6.35 g. (82% yield) of n-C₄H₉-GeH₂Cl, later redistilled to give the center fraction listed in Table I. This n-C₄H₉GeH₂Cl is a colorless, mobile liquid with a very penetrating odor.

Di-*n*-butylbromogermane and Di-*n*-butylchlorogermane.— Treatment of 5.4 g. of $(n-C_4H_9)_2$ GeH₂ with 7.15 g. of Hg-Br₂ or with 5.88 g. of HgCl₂—letting stand 1 hr. with 80% of the mercuric salt, then adding the remainder with gentle heat—furnished metallic mercury and 7.05 g. (92%) yield) of $(n-C_4H_9)_2$ GeHBr or 6.07 g. (97%) yield) of $(n-C_4H_9)_2$ Ge-HCl. Redistillations furnished the center fractions listed in Table I. Both new compounds had weak aromatic odors.

Di-*n*-butyliodogermane.—There was a quite rapid reaction during the gradual addition of 4.12 g. of powdered iodine at 25° to 4.5 g. of $(n-C_4H_9)_2$ GeH₂. A fractional distillation under 1 mm. pressure furnished 0.8 g. essentially $(n-C_4H_9)_2$ GeH₂, 4.25 g. (57%) yield) of crude $(n-C_4H_9)_2$ GeHI and approximately 2.3 g. of higher boiling material. Redistillation gave a 2.6 g. center fraction of $(n-C_4H_9)_2$ GeHI listed in Table I; this compound appeared to decompose slightly in the determination of b.p. at 760 mm. pressure.

slightly in the determination of b.p. at 700 mm, pressure. *n*-Butylgermanium Oxide.—The process included the following successive steps: shaking 7.9 g. of *n*-C₄H₉GeCl₃ twice with 24 g. portions of 8 M NH₄OH for 30 minutes each time, next adding 24-g. of CCl₄ and then washing with water, later drying the CCl₄ layer with Na₂SO₄, next careful evaporation of the CCl₄ in a platinum crucible on a hot-plate, finally drying for 3 hr. at 140° under 1 mm, pressure. This [(*n*-C₄H₉GeO)₂O]_n weighed 4.83 g. (93% yield) before powdering with an agate mortar and pestle.

n-Butyltribromogermane.—Four g. of $[(n-C_4H_9GeO)_2O]_n$ and 18 g. of 47% HBr upon heating to boiling on a hotplate, then cooling and extracting with CCl₄, followed by fractional distillation furnished 4.9 g. of crude *n*-C₄H₉GeBr₃. Retreatment of the residue—which contained mainly polymeric oxide—with 4 g. of 47% HBr gave another 1.5 g. of crude n-C₄H₉GeBr₃, with a residue of 1 g. Fractional distillation of all the n-C₄H₉GeBr₃ (6.4 g. or 67% yield) furnished a 4 g. center fraction listed in Table I. Upon shaking with a large excess of water this n-C₄H₉GeBr₃ hydrolyzed easily to the polymeric oxide.

Discussion

Preparative Methods.—Gradual addition of deficiencies of HgCl₂, HgBr₂ or I₂ convert n-C₄H₉-GeH₃ or (n-C₄H₉)₂GeH₂ into the new partially substituted compounds of the RGeH₂X or the R₂-GeHX types, respectively. Table I lists six compounds, apparently the first examples of these types. This partial substitution is exactly like that of the alkylsilanes already demonstrated.³⁻⁶ Although there are fewer known germanium compounds, 6 in all, of these types, several comparisons with the corresponding alkylhalosilanes are possible. First, the corresponding alkylgermanes are

more reactive toward halogens or halides. Second, the alkylhalogermanes of the RGeH₂X type are much less reactive toward water or aqueous NaOH. Efforts to change n-C₄H₉GeH₂Cl into the analogous n-C₄H₉GeH₂OGeH₂-n-C₄H₉ either showed incomplete reaction or destruction of some of the Ge–H bonding in treatment with aqueous NaOH; the reaction with n-C₄H₉SiH₂Cl and pure water proceeds satisfactorily.⁶

Molar Refractions.—Table I lists calculated molar refractions, based on the apparently reliable Ge–H bond refraction of 3.59⁷ and some comparatively approximate bond refractions for Ge–Cl, Ge–Br and Ge–I.⁸ The present paper merely follows the existing⁸ values for the germanium to halogen bond, with intention to improve these values later.

(8) A. I. Vogel, W. T. Cresswell and J. Leicester, J. Phys. Chem.,
58, 174 (1954); A. I. Vogel, W. T. Cresswell, G. H. Jeffery and J. Leicester, J. Chem. Soc., 531 (1952).

[CONTRIBUTION FROM THE JOHNS HOPKINS UNIVERSITY, DEPARTMENT OF CHEMISTRY, BALTIMORE 18, MD.]

Nitrogen Chemisorption at -195° on Reduced Iron and Cobalt Oxides

By R. J. Kokes

Received October 21, 1959

Evidence has been presented for chemisorption of nitrogen at -195° on reduced iron and cobalt oxides. For iron the amount of nitrogen chemisorbed corresponds to 10 to 20% of V_{m} as determined by the BET method; for cobalt this figure is 50 to 60%. These conclusions imply that nitrogen surface area determinations on metallic catalysts may be subject to large errors. If allowance is made for such errors it appears that carbon monoxide chemisorption on iron, cobalt and nickel is 1.1 to 1.2 times the correct V_m value.

Although the validity of the formal theory of physical adsorption of gases on solid surfaces¹ has been questioned,² the now classic experiments of Emmett and Brunauer³ provide ample evidence that physical adsorption provides a valid basis for the determination of surface area. Today, it is often forgotten that these investigators^{1,3} clearly stated that this method is not valid when (a) the adsorbate is strongly, *i.e.*, chemically adsorbed and (b) when the pore structure of the adsorbent is such that all the surface is not accessible to the adsorbate. In these studies³ it was found that for a wide variety of solids, nitrogen chemisorption at -195° was virtually non-existent; hence, nitrogen has become a preferred adsorbate for such measurements of surface area. In recent years, researches on evaporated metal films have shown that nitrogen chemisorption does occur on many transition metals between -195° and room temperature,⁴⁻⁶ and this led Beeck⁴ to question the validity of nitrogen surface areas on metals. At that time, however, evaporated metal films and catalysts prepared by reduction of oxides appeared to be different in many respects so that the low temperature

(1) S. Brunauer, P. H. Emmett and E. Teller, THIS JOURNAL, **60**, 309 (1938).

- (2) G. Halsey, Discussions Faraday Soc., 8, 54 (1950).
- (3) P. H. Emmett and S. Brunauer, THIS JOURNAL, **59**, 310, 1553 (1937).
- (4) O. Beeck, Adv. in Catalysis, II, 151 (1950).
- (5) E. Greenhalgh, M. Slack and B. M. W. Trapnell, Trans. Faraday Soc., 52, 865 (1956).
- (6) J. Bagg and F. C. Tomkins, ibid., 51, 1071 (1955).

nitrogen chemisorption on films was accepted as another difference between ultra-clean metals, *i.e.*, evaporated metal films, and metals prepared by reduction of oxides.

There seems to be a growing body of data which suggests that carefully reduced nickel oxides are, in fact, similar to the nickel films.7 In particular, recent investigations^{8,9} strongly suggest that reduced nickel oxides exhibit the same type of weak nitrogen chemisorption at -195° observed by Beeck⁴ on evaporated nickel films. These results suggest that other transition metals prepared by reduction of the oxide also may show nitrogen chemisorption at -195° . If this be the case, it would not only provide additional evidence that results with reduced oxides are indeed comparable with those found for films but would also reemphasize the fact^{3,4,8,9} that indiscriminate use of nitrogen for determinations of surface area can lead to large errors. In this paper we have examined reduced iron and cobalt oxides for nitrogen chemisorption.

Experimental

Catalyst Preparation.—The procedure for the preparation of the iron catalyst was similar to that described by Emmett and Gray.¹⁰ A 10% excess of annuonia was added to a solution of 200 g. of Fe(NO₃)_a·9H₂O in two liters of distilled water. The precipitate was coagulated by boiling the slurry

- (7) Cf. G. C. A. Schuit and N. H. DeBoer, Rec. Trav. Chim., 70, 1067 (1951).
- (8) R. J. Kokes and P. H. Emmett, THIS JOURNAL, 80, 2082 (1958).
- (9) R. J. Kokes and P. H. Emmett, *ibid.*, **82**, 1037 (1960).
- (10) P. H. Emmett and J. B. Gray, *ibid.*, **66**, 1338 (1944).